Positive solutions for a quasilinear elliptic equation of Kirchhoff type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE OF POSITIVE SOLUTIONS FOR A QUASILINEAR ELLIPTIC SYSTEM OF p–KIRCHHOFF TYPE

In this paper, we consider the existence of positive solutions to the following p Kirchhoff-type system ⎧⎪⎨⎪⎪⎩ −M (∫ Ω |∇u|pdx ) Δpu = g(x)|u|q−2u+ α α+β |u|α−2u|v|β , x ∈Ω, −M (∫ Ω |∇u|pdx ) Δpv = h(x)|v|q−2v+ β α+β |u|α |v|β−2v, x ∈Ω, u = v = 0, x ∈ ∂Ω, where Ω is a bounded domain in RN , M(s) = a + bsk , Δpu = div(|∇u|p−2∇u) is the p Laplacian operator, α > 1 , β > 1 , 1 < p < q < α +β < p∗ ...

متن کامل

Positive solutions for a quasilinear Schrödinger equation

We consider the quasilinear problem −εpdiv(|∇u|p−2∇u) + V (z)up−1 = f(u) + up−1, u ∈W (R ), where ε > 0 is a small parameter, 1 < p < N , p∗ = Np/(N − p), V is a positive potential and f is a superlinear function. Under a local condition for V we relate the number of positive solutions with the topology of the set where V attains its minimum. In the proof we apply Ljusternik-Schnirelmann theory...

متن کامل

Positive Solutions of Quasilinear Elliptic Equations

(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...

متن کامل

Existence and Concentration of Positive Solutions for a Quasilinear Elliptic Equation in R

We study the existence and concentration of positive solutions for the quasilinear elliptic equation −ε2u′′ − ε2(u2)′′u + V (x)u = h(u) in R as ε → 0, where the potential V : R → R has a positive infimum and inf∂Ω V > infΩ V for some bounded domain Ω in R, and h is a nonlinearity without having growth conditions such as Ambrosetti-Rabinowitz.

متن کامل

Two positive solutions of a quasilinear elliptic Dirichlet problem

For a class of second order quasilinear elliptic equations we establish the existence of two non-negative weak solutions of the Dirichlet problem on a bounded domain, Ω. Solutions of the boundary value problem are critical points of C−functional on H 0 (Ω). One solution is a local minimum and the other is of mountain pass type. Mathematics Subject Classification (2000). Primary 35J62; Secondary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2005

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.01.008